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EXECUTIVE SUMMARY

OBJECTIVE

Construct a method for nonparametric density estimation in the presence of a non-
stationary distribution. Evaluate the performance of the method.

RESULTS

1. An algorithm using the adaptive mixtures algorithm for nonparametric density
estimation was constructed. Modifications to the basic algorithm allow it to adapt its
model to changing distributions.

2. The algorithm was tested in the special case of jump nonstationarity. Its per-
formance was compared to a windowed kernel estimator approach to the same prob-
lem.

RECOMMENDATIONS

1. Establish performance criteria for use in general nonstationary problems.

2. Investigate the performance of the windowed kernel estimator with adaptive
bandwidth.

3. Modify the adaptive mixtures algorithm to use a change detector, rather than a
windowed approach. This would allow the algorithm to get better estimates when the
density is stationary, and still allow it to track the nonstationary distributions.
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INTRODUCTION

The problem of estimating a probability density function occurs in many areas of
statistics, pattern recognition, and control. In many cases, the densities that occur in
real problems are nonstationary, so a technique for estimating these densities would be
extremely useful.

In this work, we focus on a simple type of nonstationarity, which we refer to as a
"jump nonstationarity." We assume we have independent measurements taken from a
univariate random variable X that is stationary and distributed as d, before time tj, and
stationary and distributed as d2 after time tj. We say a jump occurs at time
tj if d, ; d2.

In many problems, we assumed the densities are known and the goal is to detect
the jump as soon after it occurs as possible. Often, however, the densities are not
known, and one must estimate them using one of the many techniques for density esti-
mation. We do not assume that the densities are known, or that the time of the jump
is known. Also, rather than focusing on the detection of the jump, we focus on the
estimation of the densities. Since we wish to make no parametric assumptions about
the densities, we require a nonparametric technique.

An application of this work can be envisioned by considering a sensor that is moni-
toring some process, where the probability density function of the process is of
interest. This process arises in a number of monitoring, detection, and classification
problems. Assume the sensor is not under the control of the data analyst and that it
is subject to "upgrades" without warning, these upgrades effecting the distribution of
the measurements made by the sensor. Thus, the data have a potential jump at each
upgrade time.

In addition to the requirement that the densities be modeled, we further put a proc-
essing restraint on the estimator. Due to high data rates in many problems, we
require our estimator to be recursive. That is, the estimator must update its model
using only the currently available measurement, rather than retaining a number of
measurements and iterating on these data to refine the estimate. Thus we can think of
the data as coming to us one point at a time, and we are required to report our esti-
mate of the density with each new data point.

This work is related to the work of Carlstein (1988), but with an important differ-
ence: Carlstein is interested in detecting a change-point, or jump, while we are trying
to model the density. However, the flavor of the two approaches is very similar. Both
use the idea of windowing the data and estimating the distribution within the window.
Carlstein's method is to break the data into two contiguous windows and estimate the
distribution functions of the data within the two windows. If these distribution func-
tions are different, then a jump has occurred at the point between the two windows.
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A recursive version of this could be envisioned where the two windows are of fixed
size and move across the data in time, stopping when a change has been detected.
Since we are interested in only the density of the data, we need only retain one win-
dow, although the approach given could easily be used for a change-point detector by
estimating the density twice, with a lag between the two estimators.

The estimator described in this work is the Adaptive Mixture (AM) estimator. This

estimator will be described in detail, but the idea is to model the density as a mixture
of Gaussian (Normal) distributions. The number of components of the mixture is vari-
able, and the data are windowed to allow the estimator to quickly adapt to a change in
the distribution. We will compare this estimator to a common nonparametric estima-
tor: the kernel estimator.

WINDOWED KERNEL (WK) ESTIMATOR

While the histogram is perhaps the simplest and most widely used nonparametric
estimator, we will consider a related estimator, the kernel estimator, and its windowed
version, the windowed kernal (WK) estimator. This WK estimator takes the N most
recent points, where N is the window width, and computes a kernel estimator for the
density. We will assume a Gaussian kernel, and a fixed bandwidth h The estimator
is then

A N (X -X, 2.
f(x)= 1 Exp- (1)i=1 2o-Nh 2.h _

Modifications can be made to this to allow the h to be chosen from the data, or to
have a different h for each component in the sum, but these will not be pursued here.

The purpose of considering the WK estimator is to give a benchmark against which

the performance of the AM can be measured. It can be viewed as a recursive tech-
nique, since the new estimate can be formed from the old estimate by replacing the
oldest data point with the newest. It is also easy to analyze the performance of the
kernel estimator, eliminating the need for time consuming simulations.

ADAPTIVE MIXTURES (AM)

One nonparametric technique for the estimation of densities, similar to the kernel
estimator, is to model the density as a (finite) mixture of a given distribution. The
parameters of the mixture can be estimated iteratively using the EM method or recur-
sively using a recursive version of the EM method (Titterington et al., 1985). Assuming
the number of components and initial parameters of the components are chosen appro-
priately, one can obtain a good approximation to a wide range of densities.
Throughout, we will assume the mixture is a mixture of Gaussian distributions.
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The AM model is a modification of the techniques of mixture models to allow the
number of components to grow with the number of data points. The addition of a com-
ponent to the mixture requires the specification of the mixture proportion, the mean,
and the variance. The algorithm is given below, with a pseudocode implementation,
given in the appendix. The idea is to give the new component a proportion related to
the number of components, a fixed initial variance, and a mean corresponding to the
data point x that initiated the addition. If our algorithm for deciding to add a compo-
nent was to always add, and we let the variance of all the components decrease with
the number of points, we would have a Gaussian kernel estimator.

By allowing the number of components to change with time, we have made the
parametric mixture estimator into a nonparametric estimator. The border between
parametric and nonparametric is rather ill-defined, so some may argue with this.
Although some might prefer to call this approach semiparametric, we prefer to think of
it as a nonparametric technique. It is important to note the algorithm does not assume
that the number of components of the density is known, or that it is even a mixture,
although the estimator is only applicable if the density is well approximated by a mix-
ture.

The formula for an n-component univariate Gaussian mixture is

A n F (x-mea
f(x) = > _ Exp -m (2)

i= 1 27rvari L vari )I

We call pi the mixture proportion, and obviously we require the pi's to be positive and
sum to 1.

We consider two ways to determine when to add a component. The simplest is to
add a component after a fixed number of points have been processed. Thus, we start
with one component, estimate its parameters for a fixed time T, then add a new com-
ponent to the mixture, estimate the new parameters for T points, etc. This approach
has the advantage of being simple to implement and tractable to analyze, but has the
disauvantage that the number of components grows linearly in the number of data
points. Also, the time T must be chosen large enough to allow the parameters to
adapt, but small enough to allow the flexibility needed for a wide range of problems.

Another approach is to let the data determine the number of components. The
idea is to add a component whenever the new point x is in a region of low density.
This approach allows the system to quickly detect the appearance of a new mode. The
algorithm is given in the appendix in pseudocode, but we will describe it here for com-
pleteness. Each component is a Gaussian density, and we denote the il" component
density, with mean 4i and variance vi, evaluated at the point x by N(x; ,vi). Let
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Si(X) = N(x; ti, vi) (3)N( 4i; A1 i, vi)

s(x) = Max(si(x)). (4)
1

Then we add a component if s(x) < C for a fixed (user defined) constant C. We call

C the create threshold. Thus we add a component if x is "far" from the mean of any
existing component, where "far" is determined by the above equations.

A drawback of this approach is that if the density is not well modeled by a small
number of components, say for instance if the density is uniform, we would really like
the opposite rule: to add a component whenever the new point is in a region of high
density. However, when a jump occurs, the new density has no a priori relationship to
the old, and so our estimator must be sensitive to new regions of density. We also
want the algorithm to use as few components as necessary, and to stop creating when

the model is "good enough." The solution taken by this algorithm is to make C large
if a large number of components is necessary, or to start with a large number of com-
ponents if a priori information is available. Thus we define "good enough" to be met
when the support of the density is adequately covered by the components of the esti-
mate.

If the criterion for the addition of a component is not met, we want to use the new
data point to update the current model. This update allows us to improve the esti-
mate, and to adjust the estimate after the jump has occurred. The method used is the
recursive version of the proportional update (Titterington, 1984). That is, we update
each component proportionally to the (estimated) probability that the datum is from
that component. Specifically, we have

A

amt, = Pifi(Xn+l) (5)ami=f(xn+ 1)

vari = vari + amti ( W (meani - xn, 1)2 - vari (6)var =var +W + amti - 1 (W + amti

amt.
meani = meani + -- ' (xn,1 - meani) (7)

Pi = Pi + 1 (amti - pi)- (8)
W

Here, fi(xn,+) = N(xn + 1; mean, vari) is the value of the ith component at the point
xn+l, and W, the window width, is a fixed constant that will be explained. The

important point is these formulas use only the current estimate and the most recent
data point, and thus are truly recursive.

4



.1though we will be looking exclusively at the univariate case, note these equations

can easily be modified for use on multivariate data. The only changes necessary are

to view equation 7 as a vector equation, and equation 6 as a matrix equation, where

(meanj - x, 1) 2 is to be viewed as the outer product of (mean, - xn,1) 2 with itself (the

usual quadratic term in the sample variance calculation).

To allow the algorithm to weight new points more heavily than old points, and thus

change to modeling the new distribution after the jump, we window the data. To see

how this works, consider the case of a single Gaussian, and the problem of estimating

the mean. The recursive formula for the sample mean calculation (Chan et al., 1983)

is

I
xnIl = -n + 1 (xn ,1 - 3) (9)

where xn is the nth data point, and 5-o = 0. At time n, this gives the sample mean for

the first n data points. We can make this sensitive to changes in the distribution by

putting an exponential window on the data, accomplished by choosing a constant W,

called the window width, and modifying equation 9 to

= -- 1
X I= Xn + -- (Nn- Kf)=(1 n +-Xn+l (10)

Converting this recursion to a summation we have

-- ( X- + xn~+ 1. (11)x., W W . W w=
) J=0

Note, the contribution of a point to the estimate decreases as (1 . This gives aw
measure of how fast the algorithm can react to a change in the distribution. Taking

expectations and simplifying we see that

ni= {(i )n'f +±fI (~ JI E(12)

where t = EX, and thus the estimate of the mean is unbiased. Also,
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{ ,)2 +)V .I}
Var 3C,-I = ( - +- 1 )2j Var X

{ 1j) 2n

= 1_w + 2 -1 _(_ 1--)2")V

()2 
(13)

+{(4 1= 1- 2W-1 -

1 1)2n= (2W -2)(1 2 _ 1

2W- 1

where v =Var X, and so Var K - -> Var X as n - -> o. Compare this with
2W - 1

the varianre of the sample mean, which is 1 Var X. This motihates the description
n +

of the constant W as a window on the data: it is as though we took the most recent

2W-2 points in our estimator.

The recursive version of the sample variance is

A A I nVn 1 V n +  Xn l _ Vn

n + 1 (tn+ l1Vn1 (14)

nf-IA I
= vn + - (xn+I - Kn)'.

n n+l

There are several choices that could be made to window this estimator. We will use

A W-1A Ivn.l - W Vn + - (Xn~l--) (15)

- (xi+1 - 5) 2  (16)

W +
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Taking expectations, we see

1 n (W 1)n-i E(xi 1 - i)2Ev, w + l i = ,(

1 n-I W -1{Va X Var Kn, (
W+1 In 2W 2 w  1"2(n-j-1)

W (W (wIn)+ n- I(w-1)(2W - ) + 

w++ 2W-1

= 2W2 ( 1 _ W 1)n) 2W-2 n- I (W 1l2n-j-2} (17)

{2W2 +W~ 1 (1 (W+1" 2W2+W~l 1= ( Wf~ ~W 1

f 2W 2  1( (W- 1n\ 2W 2 2W W- 1 )n-I n (W - 1 k
t22  W-1 k: W )) 2W2 +W -1 ~W ) ' 1W ))J

t2W 2 + W k 0

f 2W 2  1-( _ I 2W2  -2 W -1 1- n v

2W 2

2W 2  v as n--> oo (18)2W2+W _ 1

so the variance calculation is slightly asymptotically biased. For the window width
W = 25, which will be used in the simulations below, we have Evn,1 - -> 0.98 v.

Note, we used the fact that xi,1 and 3 are independent in order to calculate
E(xi,l _ K) 2 = E( (xi± -g) + (p - 5C) )2 = E(xi+l - g)2 + E(p-- g,)2 .

We could make the variance estimator asymptotically unbiased by multiplying equa-
* tin 1 by2W 2 +W- 1

tion 15 by 2W 2  but for the sake of simplicity of the algorithm we will use
equation 15. 2W

Vve can evaluate the performance of the estimator computed using equations 10
and 15 by comparing the density constructed with the true density. This comparison is
done by taking the mean integrated squared error (MISE), computed by taking the dif-
ference of the estimate with the true density, squaring the result, then taking the
expectation with respect to X (recall that the estimate is a function of the random vari-
able X). This expectation gives us a measure of how far from the true density we
expect the estimate to be.

7



We can compute the integrated squared error (ISE) of the estimator for the single
component case. This is

ISE 00 1 xp (y- 2Exp ( 392)2dy
0ff2Z 2 v 2 2v J

2 x 2  (19)

= +-':-, ,/2,v ,-2 xp-+ - 11
2 zv~ 2. r -+-- :vEx

SvV

Unfortunately, it is difficult to compute the expectation of this MISE even for the
simplest estimators of gj and v. Just to get a feel for the lower bound of this estima-
tor, we make some simplifying assumptions. Assume v is known and consider the
problem of just estimating the mean. Further, for simplicity let gt = 0, v = 1. Then
the ISE becomes

,,2
ISE =*-rI== Exp ( . (20)

Under these assumptions, this gives approximately (taking the first two terms of the
Taylor series)

MISE = Var X
4-Fa 1 (21)

4I (2W- 1)

In the case of W = 25, this gives a MISE of - 0.0029. A simulation was run with
n = 1000, resulting in a MUSE of - 0.0025 (obtained by averaging over 100 runs).
Compare this with equation 20 computed for the sample mean in place of the win-
dowed mean estimator. Here we get a value of

1
MISE= 1 (22)

8z(2n+1)
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after n points. This calculation gives a value of 0.0029 for n = 98 = 4W-2. Combin-
ing equations 21 and 22 and solving for n in terms of W, we have

n = (23)
2

This gives more credence to our claim that the constant W acts as a window on the
data, although it gives a different value for the window size than equation 13, and we
have a measure of the best MISE that can be expected in the simplest case.

From the above analysis we can see the effect of imposing the window W on the
parameter estimates for the single component case. Even in the single component case
we needed to simplify to make explicit calculations. In the general case, the analysis
is even more difficult and we will rely on simulations to discover its properties.

One more point needs to be made. In the single component case, we take the
initial variance, "1, to be 0. In the general case, we must be able to compute the pos-
terior probability estimate, equation 5. Since the number of components is allowed to
grow, this involves evaluating each component on the new data point, even if the com-
ponent has "seen" only a single point. Thus we must initialize the variance of each
new component as it is added to the model. The choice of this initial variance can
effect the performance of the estimator in much the same way that the choice of
bandwidth effects the kernel estimator. A small variance (relative to the underlying
density) will cause more components to be added early on, while a large variance will
tend to make the estimator model the density with a single component. Thus, like the
bandwidth of the kernel estimator, the larger the initial variance the smoother the esti-

mator will tend to be. This initial variance v, adds a term of the form (w )V1 , tow
the variance in equation 15, and so its effect on a single component decreases with
time.

PERFORMANCE ANALYSIS

The analysis of the performance of a density estimate in the case of a nonstation-
ary density is not a simple task. In the case of a jump nonstationarity, however, there
are useful measures that can be applied. We will consider two such measures, which
will be described: (1) MISE between the estimate and the true distribution on each side
of the jump, and (2) the point of "detection" of the jump. First we will describe the
experiments performed, and then we will describe the performance measures.

THE EXPERIMENT

The basic experiment is to consider a random variable that is distributed as dl for
time t = 1,...,500 and d2 for time t > 500. In the case of simulations, 1000 data points

9



are generated from this distribution. Neither the AM nor the WK know when the jump

occurs.

Three different experiments were run. These were

El: dl = N(0,1) d2 = N(3,1)

E2: dl = N(0,1) d2 = N(0,0.1)

E3: dl = -N(0, 1) +- N(1,05) d2 4N(3,1)+1N(2,0.5)+1N(-,.5)
2 2 2 4 4

where N(m,v) is the normal distribution with mean m and variance v. While these
tests are by no means exhaustive, they do give an indication of the performance of the
two approaches and the flexibility of the AM approach. The densities are pictured in
figures 1, 9, and 14.

For the AM, 100 simulations were performed for each density. This allows averag-
ing of the performance measures to get an estimate of expected performance. The
performance measures for the kernel estimator are computed directly.

The choice of bandwidth for the kernel estimator is a problem. In the case where
the two distribution are normals with equal variance, experiment 1, the bandwidth can
be chosen to be the optimal for these distributions (it is the same for d, and d2 in this
case), but for more general distributions the optimal for d, is not equal to the optimal
for d2. In this case we compromise, and take the bandwidth to be the bandwidth that
would be optimal for the component of the true distributions with the smallest vari-
ance. Experience shows this is a reasonable choice for the densities used in the
experiments. Note that in general these optimal bandwidths are unknown, and the
choice of bandwidth must be made based solely on samples from d1, or from any a
priori knowledge about the two distributions that might be available.

On all three distributions two different AM estimators were run: one with a create
threshold C of 0.1, and one where a component was added every 50 data points. In
addition, for the first two experiments, where the densities are all Gaussian, an AM
was run that consisted of a single Gaussian, and for the last experiment, a three-

component AM was run.

Note that these experiments were chosen to show the AM approach in its best light.

They are all mixtures of Gaussians, and hence the appropriate density to use the adap-
tive measures on. Although the AM approach can be used on nonmixture distribu-

tions, it performs best on mixture data.

MEAN INTEGRATED SQUARED ERROR (MISE)

MISE is a common measure of performance of density estimates for stationary data
(Silverman, 1986), and we use the same measure on the segments in which the signal

10



is stationary. For the AM simulations, we compute the ISE between the true distribu-
tion and the estimate after each data point, and then we average over the 100 simula-
tions. The figures below show these graphically. For the WK estimator, the MISE can
be computed directly since the true distributions are known.

POINT OF DETECTION (PoD)

Although this work is not concerned with the detection of the jump per se, but
rather with the estimation of the densities, one can define the PoD to be the number
of points after the jump that the MISE between the estimate and dl first equals the
MISE between the estimate and d2. Since dl and d2 are not assumed known, this is
of no use in practice, but it does give a useful measure of how fast the estimator is
detecting the change in the distributions.

In the case of the AM, the PoD is estimated from simulations while for the WK
estimator it is one-half the window width. For the purposes of comparison, the simula-
tions were run and the PoD for each experiment was estimated for the AM. Then the
MISE was computed for a kernel estimator with the same PoD. Finally, where kernel
estimator's performance was poor, a kernel estimator with approximately the same
MISE as the AM is shown, and the PoD of this new kernel estimator is compared with
the AM.

RESULTS

The results for the three experiments are shown in the figures. The results are
shown for the AM, the version of the AM that creates every 50 points, the AM
restricted to a single component in experiments 1 and 2, and the AM restricted to
three components for experiment 3. The MUSE for the WK is shown as a straight line.
MISE is computed assuming all the data comes from a single distribution, and so is
not plotted for N less than the kernel width or when the window overlaps the jump.
Note, the MISE for the WK varies from figure to figure. This variance is because for
each algorithm, the PoD is different, requiring a different window and different
bandwidth for the kernel estimator.

To talk about asymptotic results, we will use the word "stabilize" rather than "con-
verge." When we say an estimator has stabilized, we mean its NUSE has reached (or
become close to) its asymptotic limit. In the case of the WK estimator, this means
that the window contains only points from a single distribution. In the case of the
AM, we say the estimator has stabilized when the MISE is approximately flat.

When looking at the figures, it is important to keep in mind the position of the
jump (always at point 500), the PoD (indicated by an X on the x-axis), and the time
the estimator takes to stabilize. This will be discussed for the individual experiments.
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Tables 1 through 3 tabulate the MISE for the different algorithms. The MISE tabu-
lated is the average ISE for the last 100 points before the jump, and the last 100
points in the experiment. In the tables, kernel 1 and kernel 2 correspond respectively
to the kernel estimator with the same PoD as the AM, and the kernel estimator with
approximately the same MUSE as the AM estimator directly above them in the table.
AM 50 corresponds to the AM estimator that creates every 50 points, Normal corre-
sponds to the AM constrained to a single component, and AM 3 corresponds to the
AM forced to create only three components. The #Components column shows the
number of Gaussians each estimator used (rounded up to the nearest integer in the
case of the AM).

The results for the first two experiments are shown in figures 1 through 13. These
experiments involve the estimation of single Gaussian distributions, and so we show
the performance of the single component version of the AM in figures 7, 8, and 13.
Note, the single component version is the best in that its PoD is smallest, and its MISE
is smallest from among the AM estimators. The single component version performs as
well as the best kernel estimator, with a smaller PoD and (obviously) fewer compo-
nents required. This result is as expected, since in this case the AM is a parametric
estimator, and so would be expected to have the best performance.

The first experiment is designed to show the performance on a distribution where
the mean changes at the jump (figure 1). This is one of the easiest cases, and all the
methods perform well. In figure 2 we see that for equal PoD's, the AM has a much
smaller MISE than the kernel estimator, but is much slower to stabilize. In figure 3
we see that even with equal NISE, the AM is slower to stabilize than the WK estima-
tor. In this experiment, we would expect the AM to add components immediately af-
ter the jump, since the density has shifted its mass, and we see this effect in figure 4.
As in all these experiments, the AM that creates every 50 points performs the best,
and in figures 5 and 6 we see it outperforms the WK estimator. Recall that the proc-
essing requirements of this estimator are less than the kernel, with a total number of
components of 20. However, unlike the WK estimator, the number of components will
grow with time, and so the processing advantage is transient.

In figures 7 and 8 we see the single normal estimator performs as well as the ker-
nel estimator, with the added bonus of a small PoD. This means the single normal
estimator reacts quicker to the sudden change, and stabilizes in the same amount of
time as the kernel estimator.

The second experiment is designed to show the performance on a distribution
where the variance changes after the jump (figure 9). A physical reason for this phe-
nomena might be the replacement of a noisy sensor, causing the new data to have
smaller variance. For all methods, the performance on the smaller variance distribu-
tion is worse than on the larger variance distribution.
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This experiment (in particular, figure 10) shows the main drawback of the kernel
estimator approach. It is impossible to have a single bandwidth for both distributions
and still obtain optimal performance. The bandwidth used is the optimal for the sec-
ond distribution (given the number of points used in the kernel). The AM is less sen-
sitive to initial conditions, and figures 10, 12, and 13 show this. Note, unlike the first
experiment, no new components are created at the jump (figure 11). This is a result
of our creation rule, which only creates when the data are poorly covered by the cur-
rent estimate. Figure 12 shows the AM which creates every 50 points is extremely
slow to stabilize, although it has the best final MISE of all.

The third experiment is designed to show the flexibility of the AM in dealing with
more complicated densities. Here all the densities are mixtures, and there is consider-
able overlap of the densities before and after the jump (figure 14).

This experiment shows a drawback of the AM. It can be relatively slow to stabi-
lize, in contrast to a WK, where the estimator stabilizes as soon as the window fills up
with points from the new distribution. Figures 15 and 16 show this phenomena. In
figures 18 and 19 we see again the AM which creates every 50 has the best MISE.

Overall, the AM can be seen to be slower to reach a steady state than the kernel
estimator. Thus, although it is generally faster to react to the change than the kernel
estimator, it does take longer to adapt to the change.

We now apply the estimator to real data. Cobb (1978) analyzes a data set consist-
ing of the annual volume of dischargc from the Nile River from 1871 to 1970. He
assumes the data are from a jump nonstationarity, and calculates the jump to occur at
1898. Assuming the data to be normally distributed before and after the jump, we
modeled the densities using the AM constrained to consist of a single Gaussian. The
window width W was 10, and the starting variance was 12000. The results are shown
in figures 21 and 22. The solid line is the mean of the Gaussian, and the dotted line
corresponds to one standard deviation. In figure 21, the estimated parameters are plot-
ted against the data, while in figure 22, the estimated parameters are plotted against
the "true" parameters: that is the sample mean and standard deviation assuming a
jump at 1898.

The AM was then applied to this data with a create threshold of 0.6. A total of six
components were created, and the results are shown in figures 23 through 25. The
mean and standard deviations shown in figures 23 and 24 are calculated from the den-
sity estimate. The result agrees quite well with the results of the single component
case. The number of components created is plotted against time in figure 25.

Finally, to show the AM estimator is not limited to mixture densities, we look at a
density that is not well modeled by a mixture of Gaussians: the uniform distribution.
We simulated 1000 data points drawn from a uniform distribution and estimated the
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density using both an AM estimator and a kernel estimator. The AM estimator had a
window W of 200, an initial variance of 0.001, and a create threshold of 0.9. It cre-
ated a total of 47 components. The kernel estimator had a window of 398 (i.e.,
2W-2) and a bandwidth of 0.001. Figures 26 and 27 show the estimated densities for
the kernel estimator on the last 398 points, and the AM after the 1 0 0 0 th point. The
similarity of the estimates is striking. Thus, we have evidence that the AM can pro-
duce as good an estimator as the kernel estimator on a large number of distributions.
In this case, the AM uses nearly an order of magnitude fewer components, which is a
considerable reduction in computation. While we can improve the kernel estimator by
taking 798 points (4W-2, see equation 23), this is at a cost of doubling the computa-
tions and storage requirements of the estimator. Thus the advantage of the AM is
clear.

DISCUSSION

The AM approach is a flexible technique for estimating the densities of random
variables with a jump nonstationarity. We have compared the performance of this esti-
mator with a WK estimator on a number of mixture distributions. We have also noted
that the utility of the AM is not limited to mixtures.

The AM compares favorably with a WK estimator, but like everything, it has its
drawbacks. Like the kernel estimator, the AM has a number of parameters that must
be chosen. These are the initial variance of the components, the create threshold, and
the window width. The last of these is shared by any algorithm that relies on weight-
ing the new data more heavily than old data. The create threshold and initial variance
are similar to the bandwidth of the kernel estimator in that they are chosen with the
densities to be estimated in mind. A good rule of thumb, if the density does not ap-
pear to be a mixture, is to pick a small initial variance and a large create threshold,
since it is generally better to have too many components than too few. Since the algo-
rithm allows the estimator to adjust its parameters to better represent the data, the es-
timator tends to be less sensitive to choices of these initial parameters than the kernel
estimator is to the choice of bandwidth.

As the results show, the main advantage the AM has over the kernel estimator is
the ability of a single set of initial conditions to perform well on a large number of
densities. This advantage eliminates the problem the kernel estimator has, which is
that the optimal bandwidth for the density before the jump may be a very poor choice
for the density after the jump. While in principle the kernel estimator can be modified
to adjust the bandwidth to the data, this can be very expensive computationally.

Another advantage of the AM is it requires much fewer components, in general,
than the kernel estimator. This makes it much more attractive for applications where
data rates are high and the estimates must be computed quickly.
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The AM estimator that creates every 50 points is sistently better in these
experiments than either the single component AM or the one that uses the create
threshold. This lends credence to the earlier claim that the more components the bet-
ter. However, this performance increase comes at a price. Like the standard kernel
estimator, the number of components grows without bound. Furthermore, the more
components the AM uses, the slower it is to change. Thus, for densities that are not
well modeled by a mixture of a few Gaussians, the kernel estimator might be a better
choice, assuming the bandwidth problem can be solved.

One issue that should be considered from a practical standpoint is the deletion of
components. There are two reasons to delete a component. The first reason has to do
with computational considerations. Once a component's proportion has dropped to a
point where it no longer contributes significantly to the estimate, it could be deleted in
order to reduce the number of computations needed. Another reason is, with the crea-
tion ride used in this paper, there is no way to create a component that is "close" to
an existing component, even if the proportion of the existing component is zero. Thus,
one might wish to either modify the creation rule to handle this case, or allow the
algorithm to delete components.

The results of this study show the AM to be a promising algorithm for density esti-
mation in the presence of a jump nonstationarity. While the approach, like any other
has its drawbacks overall, the AM and its parametric variants have shown themselves
to be a powerful tool for density estimation.
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Figure 6. MISE for El, create every 50, detection
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Figure 7. MISE for El, single normal, detection
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Figure 8. MISE for El, single normal, detection
17 points after the jump, kernel width = 99.
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Figure 10. MISE for E2, detection 44 points
after the jump, kernel width = 88.

21



4

31

2-

II III

200 400 600 800 1000

Figure 11. Number of components for E2,
C= 0.1.
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Figure 12. MISE for E2, create every 50, detection
152 points after the jump, kernel width = 302.
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Figure 15. MISE for E3, C = 0.1, detection 20
points after the jump, kernel width = 40.
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Figure 16. MISE for E3, C = 0.1, detection 20
points after the jump, kernel width = 70.
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Figure 17. Number of components for E3,
C = 0.1.
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Figure 18. MUSE for E3, create every 50, detection
38 points after the jump, kernel width = 76.
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Figure 19. MISE for E3, create every 50, detection
38 points after the jump, kernel width = 140.
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Figure 20. MISE for E3, create only 3 components,
detection 22 points after the jump.
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to uniform distribution, window width = 200,
create threshold = 0.9, initial variance = 0.001.
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Table 1. Experiments El.

Estimator MISE before PoD MISE after Window #Components

AM 0.00605 19 0.00519 25 5

Kernel 1 0.01059 19 0.01059 38 38

Kernel 2 0.00605 43 0.00605 86 86

AM50 0.00249 22 0.00285 25 20

Kernel 1 0.00959 22 0.00959 44 44

Kernel 2 0.00284 125 0.00284 250 250

Normal 0.00549 17 0.00509 25 1

Kernel 1 0.01141 17 0.01141 34 34

Kernel 2 0.00549 49 0.00549 99 99

Table 2. Experiments E2.

Estimator MISE before PoD MISE after Window #Components

AM 0.00605 44 0.01558 25 4

Kernel 1 0.02026 44 0.01883 88 88

AM50 0.00249 152 0.01322 25 20

Kernel 1 0.00777 152 0.00781 304 304

Normal 0.00549 41 0.01610 25 1

Kernel 1 0.02139 41 0.01978 82 82

Table 3. Experiments E3.

Estimator MISE before PoD MISE after Window #Components

AM 0.00799 20 0.00935 25 6

Kernel 1 0.01253 20 0.01400 40 40

Kernel 2 0.00836 35 0.00916 70 70

AM50 0.00468 38 0.00701 25 20

Kernel 1 0.00787 38 0.00860 76 76

Kernel 2 0.00503 70 0.00540 140 140

AM3 0.00755 22 0.01047 55 3
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APPENDIX - THE ALGORITHM

Constants:
create-threshold = .1;
initial variance = 1.;
window = 25;

learn(x)
* {

/* Compute the value of the mixture on the input x
for(i = 0; i<number-components; i++){

s[ij = Exp(- (x - mean[i])z/(2 variance[i]) );

g[ij = s[il/ 2nr variance[i]

}
output = Sum( p[i] * g[i] );
/* Decide whether to create a new component or update the old ones
if( Max( s[ij ) < createthreshold)

create-componentO;
else

updatecomponents 0;

createcomponentO
{

/* Initialize the parameters of the new component */
means[number components] = x;
variance [number_components] = defaultvariance;
p[number-components] = 1 / Max( number-components, 1 );
/* Normalize the proportions to sum to 1 "/
for(i = 0; i< = number components; i++)

pi] = p[i] / Sum( p[i] );
numbercomponents = number-components + 1;

updatecomponents 0

for(i = 0); i<number components; i++){
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/* Compute the proportion to update the component/

amt = gliJ * pliJ
output

variance[i] = variance ji] + amt
(window + amt - 1)

window *(means [i] - x)- -variance [ij);
wnow +i amt

mean[iJ = mean[il + amt *t (x - mean [i]);
window

p[i] =P[,, + ant - ptil
window

A-2
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